3.2 Characteristics of Polynomial Functions

A End Behaviour
For $|x|$ very large $(x \rightarrow \infty$ or $x \rightarrow-\infty)$ the graph of the
polynomial function resemble the graph of the leading
term $y=a_{n} x^{n}$.

1a) $a_{n}>0$, even n	1b) $a_{n}>0$, odd n
1c) $a_{n}<0$, even n	1d) $a_{n}<0$, odd n

B Symmetry

A polynomial function is even if $f(-x)=f(x)$. In this case:

- all exponents of x are even
- graph is symmetric with respect to the y-axis

A polynomial function is odd if $f(-x)=-f(x)$. In this case:

- all exponents of x are odd
- graph is symmetric with respect to the origin

A zero z is a number (real or complex) where the value of the function is zero.
So $y=f(z)=0$.
An x-intercept x-int is a real number where the graph of the function intersects the x -axis.
So $y=f(x-\mathrm{int})=0$.
Notes.

- A real zeros is also an x-intercepts.
- A complex zero is not an x-intercept.

Ex 2. Classify as even, odd, or neither.
a) $f(x)=x-x^{3}+2 x^{5}$
b) $f(x)=2-x^{2}+3 x^{6}$
c) $f(x)=1+x-x^{3}+3 x^{4}$
d) $f(x)=\left(x^{2}-1\right)^{3}$
e) $f(x)=-x^{3}\left(x^{2}+1\right)^{2}$

Ex 3. (Optional) Find the zeros and the x-intercepts for $f(x)=(x-1)\left(x^{2}+1\right)$

Ex 1. For each case, find an example and sketch the end behaviour of the polynomial function.

1d) $a_{n}<0, o d d n$

D Fundamental Theorem of Algebra

A polynomial function $y=P(x)$ of degree n has n zeros (real or complex).

Notes:

- If the coefficients of the polynomial function are real numbers then complex zeros come in conjugate pairs (the number of complex zeros may be 0 (none), $2,4,6, \ldots$)
- The number of real zeros is at most n. These zeros may be distinct (different) or coincident (same)
- A polynomial function of even degree may have no real zero (all may be complex).
- A polynomial function of odd degree must have at least one real zero.

E Turning Points

A turning point is the point where an increasing behavior changes to decreasing behavior or vice versa.

A polynomial function of degree n has at most $n-1$ turning points.

A turning point may be either a maximum or a minimum point.

Ex 5 . Find the turning points for the polynomial function represented bellow. What degree may have this polynomial function? Is this degree odd or even?

Ex 4. Analyze the general shape for the following polynomial functions.
a) linear
b) quadratic
c) cubic
d) quartic

F Extrema Points

Extrema is the plural of extremum.
Extremum is either a minimum or a maximum.
An extremum may be local (relative) or global (absolute).
Each turning point is a local extremum point.
A polynomial function of even degree has either a global (absolute) minimum or a global (absolute) maximum point.
A polynomial function of odd degree has neither a global (absolute) minimum nor a global (absolute) maximum point.

Ex 6. Find the local (relative) and global (absolute) extremum points for the polynomial function at example 5.

Ex 7. Find the local (relative) and global (absolute) extremum points for the polynomial function represented bellow.

Reading: Nelson Textbook, Pages 129-135

